

Jigsaw 5D

1. [Week 4 Slides 47-50] The diagram shows the schematic sample setup for a magic-angle spinning experiment.

- Define the angles β , θ and Θ .
- Name three interactions which are averaged or partially averaged by sample spinning.
- For a nucleus with a chemical shielding tensor with axial symmetry, we can write the chemical shift as the sum of isotropic and anisotropic terms:

$$\delta = \delta_{iso} + (\delta_{zz} - \delta_{iso}) \left(\frac{3 \cos^2 \beta - 1}{2} \right)$$

For which angle β does the anisotropic part average to 0?

- What is the effect of spinning at $\beta = 90^\circ$?

2. [From Past Exam] [Keeler Section 9.8] The rate constant (in s^{-1}) for a symmetrical two-site exchange has the temperature dependence $k = 10^{13} \exp [-2500/T]$. The rate constant in Hz for which the two peaks merge together is $k_{merge} = \frac{\pi \delta \nu}{\sqrt{2}}$, where $\delta \nu$ is the chemical shift difference in Hz. Consider a chemical shift difference of 1.0 ppm. Determine the number of peaks in the 400 MHz spectra at the following temperatures:

a. 98 K

b. 108 K

c. 150 K